Processing math: 12%

domingo, 21 de marzo de 2021

Heptágono regular con regra marcada (I)

Xa temos explicado aquí cales de entre os polígonos regulares son construíbles con regra e compás e cales non. Basicamente, un polígono regular de n lados é construíble coas normas clásicas se e só se n pode descompoñerse da forma n=2^r \cdot p_1 \cdot \dots \cdot p_k , onde r>0 e os factores p_t son primos de Fermat distintos entre si.

Ese resultado que debemos a Gauss e a Pierre Wantzel asegura que, por exemplo, até n = 10  son construíbles todos os polígonos regulares agás o heptágono (n = 7) e o eneágono (n = 9).

Porén, se ampiamos as restricións permitidas si podemos realizar construcións que doutro xeito non somos capaces. É o caso da regra marcada, que xa vimos mostrando nas últimas entradas. Pois ben, esta técnica posibilita a obtención do heptágono regular partindo dun lado dado.

Accede á aplicación GeoGebra

Esta construción debémoslla a Crockett Johnson, quen a publicou en 1975. Johnson non tivo unha formación formal en matemáticas, era máis ben un ilustrador, pero si tiña certa fascinación con esa ciencia, e acabou por crear máis de 100 cadros inspirados nas matemáticas.

Aquí pode verse a demostración de que o ángulo \angle AIB mide \frac{\pi}{7}, que é a metade do ángulo central do heptágono regular. O uso da regra marcada aparece no paso 11, onde HI se constrúe apoiando a regra no punto A e con igual lonxitude que AB.

Relacionado con isto:

Ningún comentario:

Publicar un comentario